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Group Theory

1. A Group is a set G with a binary operation (denoted just as ordinary multiplication) satisfying

three axioms:

(I) The operation is associative: g(hk) = (gh)k for all g,h, k € G.
(IT) There exists an identity 1¢ € G such that (Vg) 1lgg = glg = g.
(IMT) (Vg€ G)3I g € G such that gg~! = g7lg = 16.

2. Example: let Z, = {0,1,...,n — 1} with addition modulo n. This is clearly a group, but
what about multiplication? One can easily see that only elements of Z, that are relatively
prime to n have multiplicative inverses. Therefore, Z, will be a group under multiplication
iff n is prime. Even if n is not prime, the set of invertible elements in Z,, is a group.

3. If A, B are two sets, the direct product A x B is defined to be
Ax B={(a,b):a€ Abe B}.

If A and B also happen to be groups, then the set A x B has a natural group structure defined
by performing all operations componentwise. The identity of A x B is, of course (14,15).

4. Let G, H be groups. A map ¢ : G — H is called a homomorphism if ¢(g192) = ¢(g1)P(g2)-
Exercise: It follows from this that ¢(1g) = 15 and ¢(g') = ¢(g)7!, so it is not necessary
to assume these as additional properties. A homomorphism is said to be an isomorphism if

it’s 1-1 and onto.

5. Example: let R,, denote the set of nth roots of unity, i.e. the complex roots of the polynomial
™ — 1. They form a regular n-gon on the unit circle including the point 1, and they are a
group under multiplication. Let z = exp(27i/n) be the fundamental root. Then ¢ : Z,, — R,
defined by ¢(m) = z™ turns out to be an isomorphism.



6. A subgroup is a subset H C G which is also closed under multiplication and inverses, and
contains the identity. In other words, H is also a group with the same operation. A left
coset of H is a set of the form

gH ={gh|he H}.

Theorem 1. Two left cosets gt H and g, H are the same if and only if g, g, € H.

Proof. Suppose g1H = goH. Then Vh € H,3h; € H such that gih = gohy. Then g, 'g1h = hy
which proves that g, g1 H C H. By the cancellation law, this can only happen if g;'g, € H.
Now for the converse, suppose g; ‘g2 = h € H. Then go = g1h hence goH = gthH = g1 H. [

7. Let G/H denote the set of left cosets of H in GG, and investigate when the operation

(91H) * (92H) = (9192)H (1)

is well-defined. This is easy given Theorem 1. Suppose we chose different representatives
for the two cosets above: ¢/H and g,bH instead of gtH and goH. Then g;'¢g, € H and
gy g, € H. In order that the product (¢ H) * (gyH) yield the same answer, we must have

(9192) ' (g\g5) € H. But
(9192) "' (9195) = 9597 ' 9195 = 95 ' hg @)

where we define h = g;'g, € H. We also know that ¢, = g.h; for some h; € H. So we can
rewrite (2) as (g192) ' (g,g5) = g5 ‘hgsh1, and the latter is in H if and only if

g;lhgg € H.

We are led to the inevitable conclusion that if H is a special kind of subgroup, for which
g5 'hgy € H whenever h € H (such a subgroup is said to be normal) then (1) is well-defined.

Limits and Continuity

8. Let X and Y be spaces with distance functions dx and dy respectively. (For example, the
torus inherits a distance function from an embedding in R?). A map f: X — Y is said to be
continuous if, given € > 0, there exists ¢ > 0 such that dx(z,y) < 0 = dy(f(z), f(y)) <e.

9. We give a second, equivalent definition of continuity. Let (a,),n € N be a sequence of points
in a space X. We write a = lim,,_,, a, in the case that dx(a,,a) — 0 as n — oco. A map
f X — Y is continuous if f(a) = lim f(a,) whenever a = lima,. One might say that f

“commutes with” the limit operation.
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Loops and Homotopy

A based space is an ordered pair (X, zg) where X is a topological space, and o € X is a

point.

A space X is said to be (path) connected if, given any two points p,q € X, there exists a
continuous map 7 : [0, 1] — X with v(0) = p, and (1) = q.

A loop in a based space (X, ) is a continuous map « : [a,b] — X, such that a(a) = a(b) = .
Here, [a, b] is any closed interval. Note the following important re-parameterization invariance:
if v: R — R is a continuous real function, which maps some other interval [c,d] onto [a, b],
then oy : [¢,d] — X is also a loop which has the same image in X as the original loop . We

will not distinguish between loops which are related to one another by re-parameterization.

Let a and 3 both be defined on the interval [a, b]. A homotopy of two loops «, 3 is a continuous
map F': [a,b] x [0,1] — X such that F(s,0) = a(s) and F(s,1) = 3(s). One also sometimes
writes Fi(s) = F(s,t) so that each Fj is a loop. Thus a homotopy is a continuous path in the

space of loops.

An equivalence relation, denoted ~, is a relation that is reflexive (f ~ f), symmetric (f ~
g= g~ [), and transitive (f ~ g & g ~ h = f ~ h). Homotopy of loops is an equivalence
relation. Let [a] denote the class of all loops homotopic to a.

The Fundamental Group

Given a based space (X, zg), the fundamental group is denoted m (X, z). It is the set of
homotopy classes of loops based at xy, with a group operation that we now describe. Let «
and (3 be loops from [0,1] — X. Define a new loop « - 3 by

a(2t) telo,

3]
B2t—1) teli1

]

We then define the product of two loop classes [a] - [3] = [ - §]. One must check that this

is operation is well-defined on equivalence classes, i.e. that [« - 3] only depends upon « and

(- B)(s) :{

B through their homotopy class. This is the promised group operation for m (X, zo).

Let f: X — Y be continuous. Note that if « is a loop in X then foa:[0,1] — Y is a loop
in Y. Define

form(X,20) — (Y, f(w0))
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by the formula f.([a]) = [f o a]. One can check that f,. is well-defined on equivalence classes
of loops, and is (in fact) a homomorphism, although it need be neither surjective nor injective
in general. Let us check that f, is a homomorphism.

fella-B]) = [f o (- B)] (3)

while
fe(lel) - £([8]) = [(f o) - (f o B)] (4)

However fo(a-3) = (foa)-(fo/f) up to a possible re-parameterization of the intervals used
to define the loops. Therefore, the two expressions (3) and (4) are equal.

A connected space X is said to be simply connected if m (X, z9) = {id} for some (hence all)
Xg € X.

A special case of van Kampen’s theorem. Let X = U UV, where U and V are open sets with
U NV connected and simply connected. Then my(X) = 71 (U) * m1(V'), where % denotes the
free product.



