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Group Theory

1. A Group is a set G with a binary operation (denoted just as ordinary multiplication) satisfying

three axioms:

(I) The operation is associative: g(hk) = (gh)k for all g, h, k ∈ G.

(II) There exists an identity 1G ∈ G such that (∀ g) 1Gg = g1G = g.

(III) (∀ g ∈ G) ∃ g−1 ∈ G such that gg−1 = g−1g = 1G.

2. Example: let Zn = {0, 1, . . . , n − 1} with addition modulo n. This is clearly a group, but

what about multiplication? One can easily see that only elements of Zn that are relatively

prime to n have multiplicative inverses. Therefore, Zn will be a group under multiplication

iff n is prime. Even if n is not prime, the set of invertible elements in Zn is a group.

3. If A, B are two sets, the direct product A×B is defined to be

A×B = {(a, b) : a ∈ A, b ∈ B} .

If A and B also happen to be groups, then the set A×B has a natural group structure defined

by performing all operations componentwise. The identity of A×B is, of course (1A, 1B).

4. Let G, H be groups. A map φ : G → H is called a homomorphism if φ(g1g2) = φ(g1)φ(g2).

Exercise: It follows from this that φ(1G) = 1H and φ(g−1) = φ(g)−1, so it is not necessary

to assume these as additional properties. A homomorphism is said to be an isomorphism if

it’s 1-1 and onto.

5. Example: let Rn denote the set of nth roots of unity, i.e. the complex roots of the polynomial

xn − 1. They form a regular n-gon on the unit circle including the point 1, and they are a

group under multiplication. Let z = exp(2πi/n) be the fundamental root. Then φ : Zn → Rn

defined by φ(m) = zm turns out to be an isomorphism.
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6. A subgroup is a subset H ⊆ G which is also closed under multiplication and inverses, and

contains the identity. In other words, H is also a group with the same operation. A left

coset of H is a set of the form

gH = {gh | h ∈ H} .

Theorem 1. Two left cosets g1H and g2H are the same if and only if g−1
1 g2 ∈ H.

Proof. Suppose g1H = g2H. Then ∀h ∈ H,∃h1 ∈ H such that g1h = g2h1. Then g−1
2 g1h = h1

which proves that g−1
2 g1H ⊆ H. By the cancellation law, this can only happen if g−1

1 g2 ∈ H.

Now for the converse, suppose g−1
1 g2 = h ∈ H. Then g2 = g1h hence g2H = g1hH = g1H.

7. Let G/H denote the set of left cosets of H in G, and investigate when the operation

(g1H) ∗ (g2H) = (g1g2)H (1)

is well-defined. This is easy given Theorem 1. Suppose we chose different representatives

for the two cosets above: g′1H and g′2H instead of g1H and g2H. Then g−1
1 g′1 ∈ H and

g−1
2 g′2 ∈ H. In order that the product (g′1H) ∗ (g′2H) yield the same answer, we must have

(g1g2)
−1(g′1g

′
2) ∈ H. But

(g1g2)
−1(g′1g

′
2) = g−1

2 g−1
1 g′1g

′
2 = g−1

2 hg′2 (2)

where we define h = g−1
1 g′1 ∈ H. We also know that g′2 = g2h1 for some h1 ∈ H. So we can

rewrite (2) as (g1g2)
−1(g′1g

′
2) = g−1

2 hg2h1, and the latter is in H if and only if

g−1
2 hg2 ∈ H .

We are led to the inevitable conclusion that if H is a special kind of subgroup, for which

g−1
2 hg2 ∈ H whenever h ∈ H (such a subgroup is said to be normal) then (1) is well-defined.

Limits and Continuity

8. Let X and Y be spaces with distance functions dX and dY respectively. (For example, the

torus inherits a distance function from an embedding in R3). A map f : X → Y is said to be

continuous if, given ε > 0, there exists δ > 0 such that dX(x, y) < δ ⇒ dY (f(x), f(y)) < ε.

9. We give a second, equivalent definition of continuity. Let (an), n ∈ N be a sequence of points

in a space X. We write a = limn→∞ an in the case that dX(an, a) → 0 as n → ∞. A map

f : X → Y is continuous if f(a) = lim f(an) whenever a = lim an. One might say that f

“commutes with” the limit operation.
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Loops and Homotopy

10. A based space is an ordered pair (X, x0) where X is a topological space, and x0 ∈ X is a

point.

11. A space X is said to be (path) connected if, given any two points p, q ∈ X, there exists a

continuous map γ : [0, 1] → X with γ(0) = p, and γ(1) = q.

12. A loop in a based space (X, x0) is a continuous map α : [a, b] → X, such that α(a) = α(b) = x0.

Here, [a, b] is any closed interval. Note the following important re-parameterization invariance:

if γ : R → R is a continuous real function, which maps some other interval [c, d] onto [a, b],

then α◦γ : [c, d] → X is also a loop which has the same image in X as the original loop α. We

will not distinguish between loops which are related to one another by re-parameterization.

13. Let α and β both be defined on the interval [a, b]. A homotopy of two loops α, β is a continuous

map F : [a, b]× [0, 1] → X such that F (s, 0) = α(s) and F (s, 1) = β(s). One also sometimes

writes Ft(s) = F (s, t) so that each Ft is a loop. Thus a homotopy is a continuous path in the

space of loops.

14. An equivalence relation, denoted ∼, is a relation that is reflexive (f ∼ f), symmetric (f ∼
g ⇒ g ∼ f), and transitive (f ∼ g & g ∼ h ⇒ f ∼ h). Homotopy of loops is an equivalence

relation. Let [α] denote the class of all loops homotopic to α.

The Fundamental Group

15. Given a based space (X, x0), the fundamental group is denoted π1(X, x0). It is the set of

homotopy classes of loops based at x0, with a group operation that we now describe. Let α

and β be loops from [0, 1] → X. Define a new loop α · β by

(α · β)(s) =

{
α(2t) t ∈ [0, 1

2
]

β(2t− 1) t ∈ [1
2
, 1]

We then define the product of two loop classes [α] · [β] = [α · β]. One must check that this

is operation is well-defined on equivalence classes, i.e. that [α · β] only depends upon α and

β through their homotopy class. This is the promised group operation for π1(X, x0).

16. Let f : X → Y be continuous. Note that if α is a loop in X then f ◦ α : [0, 1] → Y is a loop

in Y . Define

f∗ : π1(X, x0) → π1(Y, f(x0))
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by the formula f∗([α]) = [f ◦ α]. One can check that f∗ is well-defined on equivalence classes

of loops, and is (in fact) a homomorphism, although it need be neither surjective nor injective

in general. Let us check that f∗ is a homomorphism.

f∗([α · β]) = [f ◦ (α · β)] (3)

while

f∗([α]) · f∗([β]) = [(f ◦ α) · (f ◦ β)] (4)

However f ◦ (α ·β) = (f ◦α) · (f ◦β) up to a possible re-parameterization of the intervals used

to define the loops. Therefore, the two expressions (3) and (4) are equal.

17. A connected space X is said to be simply connected if π1(X, x0) = {id} for some (hence all)

x0 ∈ X.

18. A special case of van Kampen’s theorem. Let X = U ∪ V , where U and V are open sets with

U ∩ V connected and simply connected. Then π1(X) ∼= π1(U) ∗ π1(V ), where ∗ denotes the

free product.


